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Abstract

In this paper, we present a general family of iterative methods to solve linear equations, which includes the well-known Jacobi
and Gauss—Seidel iterations as its special cases. The methods are extended to solve coupled Sylvester matrix equations. In ou
approach, we regard the unknown matrices to be solved as the system parameters to be identified, and propose a least-square
iterative algorithm by applying a hierarchical identification principle and by introducing the block-matrix inner product (the
star product for short). We prove that the iterative solution consistently converges to the exact solution for any initial value.
The algorithms proposed require less storage capacity than the existing numerical ones. Finally, the algorithms are tested on
computer and the results verify the theoretical findings.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Lyapunov and Sylvester matrix equations play important roles in system tfgérg3—35] Although exact
solutions, which can be computed by using the Kronecker product, are important, the computational efforts rapidly
increase with the dimensions of the matrices to be solved. For some applications such as stability analysis, it is of-
ten not necessary to compute exact solutions; approximate solutions or bounds of solutions are sufficient. Also, if the
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parameters in system matrices are uncertain, it is not possible to obtain exact solutions for robust stability results
[10,12,16,21-26,28-32,37]

Alternative ways exist which transform the matrix equations into forms for which solutions may be readily
computed, for example, the Jordan canonical fiir&j, companion-type forrf2, 3], Hessenberg—Schur forfrh, 13].
In this area, Chu gave a numerical algorithm for solving the coupled Sylvester eqyaiiceasd Borno presented
a parallel algorithm for solving the coupled Lyapunov equat{dhsBut, these algorithms require computing some
additional matrix transformation/decomposition; moreover, they are not suitable for more general coupled matrix
equations of the form:

p
ZAinjBij:Ci’ i:1,2,...,p, (1)
j=1

whichincludes the coupled Lyapunov and Sylvester equations as its special caseX (B} *" are the unknown
matrices to be solved4;;, B;;, andC;; represent constant (coefficient) matrices of appropriate dimensions. For
such coupled matrix equations, the conventional methods require dealing with matrices whose dimensions are
mnp x mnp. Such a dimensionality problem leads to computational difficulty in that excessive computer memory
is required for computation and inversion of large matrices ofmizg x mnp. For instance, iln =n = p = 100,

thenmnp x mnp = 10° x 10P.

In the field of matrix algebra and system identification, iterative algorithms have received much attention
[8,10,14,27,32] For example, Starke presented an iterative method for solutions of the Sylvester equations by
using the SOR techniqy86]; Jonsson and Kagstrom proposed recursive block algorithms for solving the coupled
Sylvester matrix equatior{48,19] Kagstrém derived an approximate solution of the coupled Sylvester equation
[20]. To our best knowledge, numerical algorithms for general matrix equations have not been fully investigated,
especially the iterative solutions of the coupled Sylvester matrix equations, as well as the general coupled matrix
equations in (1), and the convergence of the iterative solutions involved, which are the focus of this work.

In this paper, the problem will be tackled in a new way—we regard the unknown maXrjdesbe solved as the
parameters (parameter matrices) of the system to be identified, and apply the sdvea#leghical identification
principle to decompose the system into some subsystems, and derive iterative algorithms of the matrix equations
involved. Our methods will generate solutions to the matrix equations which are arbitrarily close to the exact
solutions.

The paper is organized as follows. In Section 2, we extend the well-known Jacobi and Gauss—Seidel iterations and
present a large family of iterative methods. In Sections 3 and 4, we define the block-matrix inner product (the star
product for short) and derive iterative algorithms for the coupled Sylvester matrix equations and general coupled
matrix equations, respectively, and study the convergence properties of the algorithms. In Section 5, we give an
example for illustrating the effectiveness of the algorithms proposed. Finally, we offer some concluding remarks in
Section 6.

2. Extension of the Jacobi and Guass—Seidel iterations
Consider the following linear equation:
Ax =b. (2)

Here,A =[q;;]1 (i, j =1,2,...,n)is agiven full-rank: x n matrix with non-zero diagonal elemenisc R" is a
constant vector, and € R" an unknown vector to be solved. LBtbe the diagonal part &%, andL andU be the
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strictly lower and upper triangular parts &f

D =diadai1, az, . .., am] € R™",
0 o --- 0 0 ap aj - ai,
a1 0 : 0 0 ars a,
L=|agy agp 0 . G|ER™ U=|i o1 | eROY
: 0 : o dpein
apl au2 -+ Adpp—1 0 o ... ... 0 0

which satisfyL + D + U = A. Then both the Jacobi and Gauss—Seidel iterations can be expre$8gdips
Mx(k)=Nxtk—1)+b, k=123, ...,

wherex (k) is the iterative solution of. For the Jacobi method/ = D andN = —(L + U); for the Gauss—Seidel
method,M =L + D andN = —U.

Unfortunately, the Jacobi and Gauss—Seidel iterations cannot guarantegjhainverges to the exact solution
x = A~1p, and are not suitable for solving the non-square systém= g with H € R™*". This motivates us to
study new iterative methods.

LetG € R"*" be afull-rank matrix to be determined apd- 0 be the step-size or convergence factor. We present
a large family of iterative methods as follows:

x()=x(k—1D)+uGb— Ax(k— 1], k=1,23,..., ©)

which includes the Jacobi and Gauss—Seidel iterations as special cases. For exampig et andy = 1,
we get the Jacobi method; whéh= (L + D)~ andu = 1, we obtain the Gauss—Seidel method.
The following two lemmas are straightforward and their proofs are omitted here.

Lemma 1. If we takeG = AT, then the gradient iterativéor iterative gradieny algorithm

x(k)=x(k — 1)+ puAT[b — Ax(k —1)], O<p<-

2
——— or O<u<-——, 4
Tl ATA] VYL )

yieldslimy_ o x (k) = x. Here, | X |12 =tr[X X ].

Lemma 2. If we takeG = A1, then the following iterative algorithm converges to x
x(k)y=x(k — 1) +puA b — Ax(k —1)], O<pu<2. (5)
If Ais a non-squaren x n full column-rank matrixthen we havéim;_, o x (k) = x in the following
x(k)=xk —1) + uwATA)TATb — Ax(k — 1)], O<u<2. (6)

Itis easy to prove that the iterative solution@) in (4)—(6) all converge to the least-squares soluti@hA) AT
at a fast exponential rate, or are linearly convergent. Wheni, the iteration in (6) gives (1) = (ATA)"*ATb.
So (6) is also called the least-squares iterative algorithm.

The iterative algorithms in (4) and (6) are also suitable for solving non-square systems and are very useful for
finding the iterative solutions of general matrix equations to be studied later; the convergencefac{bysand (6)
do not rely on the matriA and is easy to choose, although the algorithms in (5) and (6) require computing matrix
inversion only at the first step.
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3. Coupled Sylvester matrix equations

In this section, we study least squares iterative algorithms to solve the coupled Sylvester matrix equation
AX +YB=C, DX+YE=F. (7)

Here,A, D € R™*™ B, E € R"™*" andC, F € R™*" are given constant matrice®, Y € R"*" are the unknown
matrices to be solved.

First, let us introduce some notation. The notatipiis the identity matrix ofz x n. For two matricesv andN,
M ® N is their Kronecker product. For twa x n matricesX andY with

X =[x1,x2,...,x,] € R™*",
col[ X] is anmn-dimensional vector formed by columns Xf
X1
col[X] = x2 e R™ and colX,Y]= [28:5(]]] € R@mm
Xn
The following result is well-known.

Lemma 3. Eq. (7) has a unique solution if and only if the matrix

o ]n QA BT Q Im (2mn)x (2mn)
52:= [In®D ETel, | <"

is non-singularin this casethe unique solution is given by
col[ X, Y] =S, *col[C, F], (8)

and the corresponding homogeneous matrix equati@n- Y B=0, DX+Y E=0hasaunique solutiarX=Y =0.
In order to derive the iterative solution to (7), we need to introduce the intermediate majraoedh, as follows:
by :[gj‘g], (©)
by :=[C — AX, F — DX]. (10)
Then from (7), we obtain two fictitious subsystems
S1:G1X=b1, S2:YHq=bo.

Here,G1 := [g] andHy :=[B, E|.

Let X (k) andY (k) be the iterative solutions &fandY. Referring to Lemma 2, it is not difficult to get the iterative
solutions taS1 andS, as follows:

.
Xk)=Xk-1) + u(GIGl)l[g] {bl — [g} Xk — 1)} , (11)

Y(k)=Y(k—1)+ ulbz — Y(k — D[B, E}B, EI'(HiH{)™". (12)
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Substituting (9) into (11) and (10) into (12) gives

.
B . _1fA C-YB A
X(k)=X(k —1) 4+ u(G1Gy) [D} {[F_YE}—[D}X(k—l)}

.
e .. a[Al [C—YB—AX(k—1)
=Xk =D +u(6161) [D} [F—YE—DX(k—l)]’ (13)
Y(k)=Y(k — 1) + u{[C — AX, F — DX]—Y(k —1)[B, E}}[B, E]"(HiH{)™!
=Y(k—1) 4 ulC—AX —Y(k —1B, F—DX —Y(k—1E]|[B, E]"(HiH]) . (14)

Here, a difficulty arises in that the expressions on the right-hand sides of (13) and (14) contain the unknown parameter
matrixY andX, respectively, so it is impossible to realize the algorithm in (13) and (14). Our solution is based on the
hierarchical identification principle: the unknown variabYes (13) andX in (14) are replaced by their estimates

Y (k—1) andX (k — 1). Thus, we obtain the least-squares iterative solutho@is andY (k) of the coupled Sylvester
equation in (7)

(15)

.
X(k)=X(k—1)+u(G{G1)—1[A] [C —AX(k-1)—-Y(k-1B ]

D| |F-DXtk—-1) —Y(k—-1DE
Y(k)=Y(k — 1)+ u[C — AX(k—1) —Y(k —1)B, F — DX(k —1) — Y(k — DE][B, EI"(HiH) %,
(16)
-1 or u= !
Fomen 0 T adGu(GIGY) TGT1 + Jmad HI (H1H]) Hyl

17)

The least-squares iterative algorithmin (15)—(17) requires computing the matrix inve{Ghﬁ@_l and(HlHlT)‘1
only once at the first step. To initialize the algorithm, we t&k@) = Y (0) = 0 or some small real matrix, e.g.,
X (0) =Y (0) =107%1,,,,, with 1,,.,, being ann x n matrix whose elements are 1.

Theorem 1. If the coupled Sylvester equation(if) has a unique solution X and then the iterative solutio (k)
andY (k) given by the algorithm ii15)—(17)converges to X and Y for any finite initial valu¥$0) andY (0), i.e.,

lim X(k)=X, and lim Y(k)=Y.
k— 00 k—00

Proof. Define two error matrices
X=Xk —X, Yhk)=Yk) —Y.
By using (7) and (15)—(16), it is not difficult to get

T - -
X(k)=X(k—1) +u(GIGl>—1[A} [—Ax(k— )—-Yk—-DB }

D| | -DX(k—-1)—Yk—-1E (18)
Y(k)y=Y(k —1) + u[—AX(k —1) —Y(k —1)B — DX(k — 1) — Y (k — DE][B, E]'(HiH{)"1.  (19)
Taking the norm in (18) and using the formula
IG1LX + (G1GD) Y1 =tr{[X + (G1G1) Y1 (G]GD[X + (G{G1) Y]}
=tr[X"(GIG)X +2XTY + Y'(GIG)~1r)
= |G1X|I” + 2t[X Y] + (G GD) 2|2,
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give
IG1X ()| = r[XT (k)G G1X (k)]
T ~ ~
— G X (k — D)2 Ta_plA| | AX&K-D-Yk-1B
=|G1X(k — D] +2utr{x (k 1)[D] [_DX(k_l)_Y(k_l)E”
2

2 —AX(k—l)—Y(k—l)B:|

—DX(k—-1)—Y(k—-1E
NG Xk — 1)))? = 2utr{[AX (k — D] [AX(k — 1) + Y (k — 1) B]

+[DXk — D' [DX(k — 1)+ Y(k — DE]}

+12m[|AX(k — 1)+ Y(k — DB|?>+ |DX(k — 1) + Y (k — E|?]. (20)

(G1G)~Y2G] [

Similarly, we have
1Y (k) Hal|* = tr[Y (k) HLH] YT (k)]
= ||Y (k—1)H1|>+2utr{[—AX (k—1)—Y (k—=1)B, —DX (k—1)—Y (k—1)E1[B, E]'Y"(k—1)}
+ 12|[-AX(k —1) — Y (k — 1)B, —DX(k — 1) — Y (k — ) E]H] (H1H{)~Y?|?
<Y (k — DH|? — 2utr{[¥ (k — DB [AX (k — 1) + ¥ (k — 1) B]
+[Y(k—1DE]"[DX(k — 1)+ Y(k — DE]}
+uPnlAX(k — 1) + Y (k — DB|I> + |DX(k — 1) + Y (k — DE|?]. (21)
Defining a non-negative definite function
W (k) = IGIX (0)? + I|¥ (k) Ha |,
and using (20) and (21), we have
WE) KWk —1) —2u[|AX(k = 1) + Y(k — DB|? + | DX (k — 1) + Y (k — DE|?]
+12m+n)[|AX(k—1) + Yk —)B||°+ |DX(k —1) + Y(k — D E||?]
Wk —1) — u[2— puim +WINAX (k — 1) + Y (k — DB|? + |[DX(k — 1) + Y (k — DE|?]
k—1
SW(0) — w2 — p(m +m)] Y [IAX @) + Y () BI? + IDX (i) + Y (D E[?).
i=0
If the convergence factor is chosen to satisfy

0 )

then

> lIAX (k) + Y()B|* + DX (k) + Y (k) E||] < 0.
k=1

It follows that ask — oo,

IAX (k) + Y (k)B||* + | DX (k) + Y () E||* =0,
or

AX(k)+Y(k)B=0, DX(k)+Y(KkE=0.

According to Lemma 3, we hav&(k) — 0andY (k) — 0ask — oo. Thus Theorem 1 is proven.[]
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The convergence factor in (17) may not be the best and may be conservative. In fact, there existssadiest
that the fast convergence rateXotk) to X andY (k) to'Y can be obtained—see the example to be studied later.

4. General coupled matrix equations

In this section, we will extend the iterative method to solve more general coupled matrix equations of the form

A11X1B11+ A12X2B12+ - - + A1p X p B1p = Ca,
A21X1B21+ A22X2B22 + -+ - + A2p X p Bop = Co,

Ap1X1Bp1 + Ap2XoBpo + -+ App X pBpp = C). (22)

Here,A;; € R™*", B;j € R"*" andC; € R™*" are given constant matrices; € R"*" are the unknown matrix
to be solved.

The general coupled matrix equations (22) include the following matrix equations as the special cases: (i) the
discrete-time Sylvester equatiohX BT + X = C [18,19] (ii) the discrete-time Lyapunov equatiochX AT — X =C
[18,19] (iii) the generalized Sylvester (Lyapunov) equatietiX B + CX D = F [7]; (iv) the coupled Sylvester
equations as discussed in the preceding se¢d@®0]; and (v) the general coupled Lyapunov matrix equations
associated with linear jump parameter systéfhs

In order to more succinctly express the least-squares iterative algorithm to be presented later, we introduce the
block-matrix inner product—the stax)product for short, denoted by notatienwhich differs from Hadamard
(inner) produc{9,11,17,38Jand general matrix multiplication. Let

X1 Y1 Ay
X = .)(2 S R(mp)xn’ Y = _Y2 S R(np)xm’ Ai = .AZi S R(mp)xm’
X, Y, Api
B =By Bai,.... Byl e R S, =[A;]. Sg=[B;jl. Sgr=I[B]].
Spy=IB}®Aijl. i.j=12... p.
Then the block-matrix star product is defined as
X1 Y1 X1 A1X1 ApXo - ApX,
X2 Y, XoY? A21X1 AxpXo - A2pX,
XxY=|. x| . =1. , SaxX= . ) . )
LX) \g XpYp Ap1X1 Ap2Xo - AppXp
M X1B11 XiB12 --- Xi1Bip A11B11 A12B12 .-+ A1pBiy
X2B21 X2B - X2By, A21B21  A22B22 -+ ApBop
X x Sp= ) ) ) . SaxSp= . ) .
LXpBpr XpBp2 -+ XpBpp ApiBpr Ap2Bpz - AppBpp

Inthe above definitions, we assume that the dimensions of multiplier matrix and multiplicand matrix are compatible.
The block-matrix star Kronecker product, denoted by notatiois defined by

SBT®SA = Sp.

Taking into account the dimension compatibility, the star product is superior to matrix multiplication. Note that
ABxC=A(B*C) # (AB) *C.
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Let Inpxn = [Ln, I, ..., I,]T € R"P>" Then the star product has the following properties:

P
o Il XY =[X1, Xo.....X,lY =) X,
i=1

~ _ T ~
A7 G BJ_I__i A1 XiBy T [ C1
| A2 Cs By, A2 X Bo; Cs
otr {xT| Sls] 7 t=tr _ ,
Api Cp B;l, Api XiB); Cp
_ T 2 -
Ay G BlT,' C17?
Aog; Co B,. Co
o |(ATAp~V2| 7 S BBV <mnl||
Api _Cp B;i Cp

For the Hadamardo] product, we hav&X o Y =Y o X, but X o S, is not defined. For the star product, since
the multiplier matrix and multiplicand matrix are not necessarily of the same size, in geAerad, = B * A,
AxBxC=(A*xB)xC #Ax(BxC).

Lemma 4. Eqg. (22)has a unique solution if and only if the matsy e R™"?)*("P) js nonsingularin this case
the solution is

collX1. X2, .... Xp] =5, col[C1, Ca, ... Cpl:

andifC; =0 (G =1, 2,..., p),then the matrix equation i(22) has unique solution¥; =0 (i =1, 2,..., p).

In order to derive the iterative algorithm for solving the general coupled matrix equation in (22), we first consider
the coupled Sylvester equation in (7) to a more general form

AXIp+ IAYB=C, DXIg+ IpYE=F,

whose iterative solution can be expressed as

;
B 1. a[AT[[C— AX(k - DI — I4Y(k — DB T
X(k) =X (k= 1)+ u(G{G1) [D] {[F_Dx(k_l),E_lDy(k_l)E]*[IB,IE] } (23)

;
Y(k)=Y(k—1) + ““Ap] {[g - ?));((’2__11))11’2 _—11?5/((]11_—11))12] * [B, E]T} (HiH)™L. (24)

If I4, Ip, Ip andig areidentity matrices of appropriate dimensions, then the algorithmin (23) and (24) is equivalent
to the one in (15) and (16).

Let X; (k) be the estimates or iterative solutions@f We present the least squares iterative algorithm of computing

the solutionsX; (k) (i =1, 2, ..., p) of the matrix equations (22) as follows:
Ap T [C1— 201 A4 X (k — 1By Bf
A Co— Yl 1 A2; X j(k — 1By, B,
Xi)=Xik =D +pATap7t 7 | | ! «| % | BB (25)

, : : T
Api Cp— Zle ApjXj(k = 1)By; By
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1
or pu=

— . 26
mnp 3P dmaxl Ai (AT A)"rAT 1imax B (B; BT 71 B;] (26)

'u:

Since (25) and (26) are established based on the least-squares iterative idea of Lemma 2, the algorithm in (25) and
(26) is known as the least-squares iterative algorithm. In this algorithm, we only require computing the inversion
of them x m andn x n matrices instead of thenp x mnp matrix, e.g., in Lemma 4.

Theorem 2. If the coupled matrix equation i22) has unique solutionX;, i = 1,2, ..., p, then the iterative
solutionsX; (k) given by the algorithm i25)—(26)converge to the solutions; for any finite initial valuesX; (0),
i.e.,

lim Xi(k)=Xi, i=l,2,...,p.
k— 00

Proof. Define the estimation error matrix

X; (k) = X; (k) — X;.

Let
Cr(k) Y1 AL Xk — DBy,
Calk) | | X7y A2;X;(k — 1)By;
Cr® Yy ApiXj(k — 1By,
By using (22) and (25), it is not difficult to get
Ay G [BY
. . | Az Ca(k) By, _
Xik)=X;(k — 1) — AT an~t 07| «| 7| BBDH
Api CN‘p(k) B;Iy—i

Defining a non-negative definite function
Vi(k) = [|A; X (k) Bi ||,
using the above equation, the star product properties and formula
tr{[X + (AT A1V (B; B)) "M (A] ADIX + (AT A) 'Y (B; B 11(B; B])}
=tr[XT(A]ADX(B;B) +2X"Y + (B;B)) "1y T(A] Ap)~1r)
= | A; XB;|? + 2t [XTY] + tr[(B; BN "ty T(A] Ap) 7y
<IAi X B>+ 2t X Y] + (AT A) Y2y (B BH ™22,

we have
Vi (k) = tr[X T (k)(A] A) X (k)(B; B])]
A1 Xi(k = 1)By T 1 C1(k) C1(k) 7|2
A2 Xi(k — 1) B Ca(k) 9 Ca(k)
<Vitk — 1) — 2utr ) . +pmn|l| . . (27)

ApiXi(k —1)B i Cp(k) Cp(k)
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Summing for from 1 top yields

P
Vk) =) Vitk)

i=1

AR C1k) 7|2

Ca(k) ) Ca(k)
<Vk—=1) —2u : +wmnp| |

Cp(k) Cplh)

p
=V(k—1) — w2 — pmnp) Z I (k)||2
i—1

kK p
=V(k—1) —u@2—pmnp) Y > ICDI.
=1 i=1
If the convergence factqris chosen to satisfy

2
O<pu<——oy,
mnp

9]

D ICiK)IP < oo

k=1 i=1

<

It follows that ask — oo,

p P
D NICEIP=Y " 1A Xtk — 1B |> =0,

i=1 j=1
or

P
ZAijffj(k—l)Bijzov i=12...,p.
j=1

According to Lemma 4, we prove Theorem 2]

From the proofs of Theorems 1 and 2, we can see that the iterative solutions in (15)—(17) and (25)—(26) are
linearly convergent.

Let
X1(k) C1
X (k) = ,XZ(k) e R €= ,C2 e ROmPI*n
X, (k) Cp

Dy =diad(A]A1), (AJA2).....(A}Ap)]. Dp=diad(B1B]), (B2B3).....(B,B))].
Then (22) can simply be expressed as

Sa*x X * Splypxn =C.
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By using the star product properties, (25) can be written as the following more compact form:

C1— 20 1 A1 X (k — 1) By,

Ca— Y01 A2jX (k= ) By;

X (k)=X(k — 1) + uD S} % Spr Dyt

Cp— 25‘):1 ApjXjk —1)Bp;
=X (k— 1)+ uD;*STC — Sp # X (k — 1) % Sglypxn] % SgrD5*.
Referring to Lemma 1, we also establish the gradient iterative algorithm for the solution of the general coupled
matrix equation (22) as follows:
C1— Y01 AL X (k= DBy
Co— P [ AziX;(k—1)By;
X (K)=X(k = 1)+ pS} | . g sy
Cp— Xioa ApiX k= 1By,
=X(k—1) 4+ uSHIC — Sa * X (k — 1) % Splypxnl * SgT,
1 1
p= - :
Y 21 1A BijlI? Sy 3P dmad Aij Al 1imax Bij B}

/J:

5. Example

In this section, we give an example to illustrate the performance of the proposed algorithms.
Suppose that the coupled matrix equationsake+ YB = C, DX + YE = F with

4_[200 1007 . _[100 -020] _[-200 —0.50
~|-100 200|° “T|020 100 | “T| 050 200
p_[-100 —300] . _[1320 1060] , _[-950 1800
~| 200 -400]° 7| 060 840 T [1600 350 |-

Then the solutions ok andY from (8) are

X—_xll x12| [ 4.00 300 y— | Y vz _ 2.00 100
__x21 X22 3.00 400/’ - —2.00 300|(°

y21 Y22

Taking X (0) = Y (0) = 10~%1,,.5, we apply the algorithm in (15) and (16) to compixté) andY (k). The iterative
solutionsX (k) andY (k) is shown inTable 1 where

XK = X2+ YK — Y2
o= 2 2
X112+ 1Y

is the relative error. The errofswith different convergence factors are showrfig. 1L FromTable landFig. 1,
it is clear thatd are becoming smaller and smaller and goes to zekdrageases. This indicates that the proposed
algorithm is effective.

The effect of changing the convergence faqias illustrated inFig. 1 We see that the larger the convergence
factoru is, the faster the convergence the algorithm (or, the smaller the estimation error). Howgigtoib large,
the algorithm may diverge. How to choose a best convergence factor is still a project to be studied.
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Table 1
The iterative solutionsy(= 1/1.10)
k X11 X12 x21 x22 11 Y12 y21 Y22 0 (%)

5 3.61430 2.99005 2.94096 3.69706 3.32282 0.38948 —2.97539 3.27086 22.33259974
10 3.58609 3.05453 2.90272 3.87639 2.34456 0.78180—-2.21107 3.09466 7.84857813
15 3.82227 3.06025 2.95326 3.97523 2.21169 0.83128-2.10876 3.07171 4.34305171
20 3.89469 3.05144 2.97031 3.99632 2.10743 0.90351-2.04993 3.04066 2.41409661
25 3.94038 3.03387 2.98259 4.00113 2.06247 0.93997 —2.02722 3.02519 1.42914360
30 3.96448 3.02170 2.98944 4.00170 2.03639 0.96383—-2.01531 3.01515 0.85256301
35 3.97879 3.01341 2.99364 4.00132 2.02173 0.97803—-2.00897 3.00919 0.51331998
40 3.98723 3.00821 2.99615 4.00089 2.01304 0.98670—2.00533 3.00556 0.30979089
45 3.99229 3.00500 2.99767 4.00056 2.00787 0.99195-2.00320 3.00337 0.18728213
50 3.99534 3.00303 2.99859 4.00035 2.00475 0.99512-2.00193 3.00204 0.11329119
55 3.99718 3.00184 2.99915 4.00021 2.00287 0.99705-2.00117 3.00123 0.06855766
60 3.99829 3.00111 2.99948 4.00013 2.00174 0.99821-2.00071 3.00075 0.04149393

Solution 4.00000 3.00000 3.00000 4.00000 2.00000 1.00000—-2.00000 3.00000

1 — u=1/10.0

i —— u=1/4.00 |]
— u=1/2.00 |
— p=1110
= 1/0.99 |1

1 1
o — A M= = " =
e = A GGG TG T+ imax H] (HLH] )L Hy)

Fig. 1. The relative errorg of Example 1 versuk (dots)u =

_1
=3.

6. Conclusions

A family of iterative methods for linear systems is presented and a least-squares iterative solution to coupled
matrix equations are studied by using the hierarchical identification principle and the star product. The analysis
indicates that the algorithms proposed can achieve a good convergence property for any initial values. How to use the
conjugate gradient method to solve the coupled matrix equation requires further research. Although the algorithms
are presented for linear coupled matrix equations, the idea adopted can be easily extended to study iterative solutions
of more complex matrix equations and nonlinear matrix equations, e.g., the Riccati equation.
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